145 research outputs found

    The proteosome inhibitor MG132 attenuates Retinoic Acid Receptor trans-activation and enhances trans-repression of Nuclear Factor κB. Potential relevance to chemo-preventive interventions with retinoids

    Get PDF
    BACKGROUND: Nuclear factor kappa B (NFκB) is a pro-malignant transcription factor with reciprocal effects on pro-metastatic and anti-metastatic gene expression. Interestingly, NFκB blockade results in the reciprocal induction of retinoic acid receptors (RARs). Given the established property of RARs as negative regulators of malignant progression, we postulated that reciprocal interactions between NFκB and RARs constitute a signaling module in metastatic gene expression and malignant progression. Using Line 1 tumor cells as a model for signal regulation of metastatic gene expression, we investigated the reciprocal interactions between NFκB and RARs in response to the pan-RAR agonist, all-trans retinoic acid (at-RA) and the pan-RAR antagonist, AGN193109. RESULTS: At-RA [0.1–1 μM] dose-dependently activated RAR and coordinately trans-repressed NFκB, while AGN193109 [1–10 μM] dose-dependently antagonized the effects of at-RA. At-RA and AGN193109 reciprocally regulate pro-metastatic matrix metalloprotease 9 (MMP 9) and its endogenous inhibitor, the tissue inhibitor of metalloprotease 1 (TIMP 1), in a manner consistent with the putative roles of NFκB and RAR in malignant progression. Activation of RAR concurs with its ubiquitination and proteosomal degradation. Accordingly, the proteosome inhibitor, MG132 [5 μM], blocked RAR degradation, quelled RAR trans-activation and enhanced RAR trans-repression of NFκB. CONCLUSION: We conclude that reciprocal interactions between NFκB and RARs constitute a signaling module in metastatic gene expression and malignant progression and propose that the dissociative effect of proteosome inhibitors could be harnessed towards enhancing the anticancer activity of retinoids

    New fire diurnal cycle characterizations to improve fire radiative energy assessments made from low-Earth orbit satellites sampling

    Get PDF
    Accurate near real time fire emissions estimates are required for air quality forecasts. To date, most approaches are based on satellite-derived estimates of fire radiative power (FRP), which can be converted to fire radiative energy (FRE) which is directly related to fire emissions. Uncertainties in these FRE estimations are often substantial. This is for a large part because the most often used low-Earth orbit satellite-based instruments like the MODerate-resolution Imaging Spectroradiometer (MODIS) have a relatively poor sampling of the usually pronounced fire diurnal cycle. In this paper we explore the spatial variation of this fire diurnal cycle and its drivers. Specifically, we assess how representing the fire diurnal cycle affects FRP and FRE estimations when using data collected at MODIS overpasses. Using data assimilation we explored three different methods to estimate hourly FRE, based on an incremental sophistication of parameterizing the fire diurnal cycle. We sampled data from the geostationary Meteosat Spinning Enhanced Visible and Infrared Imager (SEVIRI) at MODIS detection opportunities to drive the three approaches. The full SEVIRI time-series, providing full coverage of the diurnal cycle, were used to evaluate the results. Our study period comprised three years (2010–2012), and we focussed on Africa and the Mediterranean basin to avoid the use of potentially lower quality SEVIRI data obtained at very far off-nadir view angles. We found that the fire diurnal cycle varies substantially over the study region, and depends on both fuel and weather conditions. For example, more "intense" fires characterized by a fire diurnal cycle with high peak fire activity, long duration over the day, and with nighttime fire activity are most common in areas of large fire size (i.e., large burned area per fire event). These areas are most prevalent in relatively arid regions. Ignoring the fire diurnal cycle as done currently in some approaches caused structural errors, while generally overestimating FRE. Including information on the climatology of the fire diurnal cycle provided the most promising avenue to improve FRE estimations. This approach also improved the performance on relatively high spatiotemporal resolutions, although only when aggregating model results to coarser spatial and/or temporal scale good correlation was found with the full SEVIRI hourly reference dataset. In general model performance was best in areas of frequent fire and low errors of omission. We recommend the use of regionally varying fire diurnal cycle information within the Global Fire Assimilation System (GFAS) used in the Copernicus Atmosphere Monitoring Services, which will improve FRE estimates and may allow for further reconciliation of biomass burning emission estimates from different inventories

    Global changes in dryland vegetation dynamics (1988–2008) assessed by satellite remote sensing: comparing a new passive microwave vegetation density record with reflective greenness data

    Get PDF
    Drylands, covering nearly 30% of the global land surface, are characterized by high climate variability and sensitivity to land management. Here, two satellite-observed vegetation products were used to study the long-term (1988–2008) vegetation changes of global drylands: the widely used reflective-based Normalized Difference Vegetation Index (NDVI) and the recently developed passive-microwave-based Vegetation Optical Depth (VOD). The NDVI is sensitive to the chlorophyll concentrations in the canopy and the canopy cover fraction, while the VOD is sensitive to vegetation water content of both leafy and woody components. Therefore it can be expected that using both products helps to better characterize vegetation dynamics, particularly over regions with mixed herbaceous and woody vegetation. Linear regression analysis was performed between antecedent precipitation and observed NDVI and VOD independently to distinguish the contribution of climatic and non-climatic drivers in vegetation variations. Where possible, the contributions of fire, grazing, agriculture and CO<sub>2</sub> level to vegetation trends were assessed. The results suggest that NDVI is more sensitive to fluctuations in herbaceous vegetation, which primarily uses shallow soil water, whereas VOD is more sensitive to woody vegetation, which additionally can exploit deeper water stores. Globally, evidence is found for woody encroachment over drylands. In the arid drylands, woody encroachment appears to be at the expense of herbaceous vegetation and a global driver is interpreted. Trends in semi-arid drylands vary widely between regions, suggesting that local rather than global drivers caused most of the vegetation response. In savannas, besides precipitation, fire regime plays an important role in shaping trends. Our results demonstrate that NDVI and VOD provide complementary information and allow new insights into dryland vegetation dynamics

    Madagascar's fire regimes challenge global assumptions about landscape degradation

    Get PDF
    Narratives of landscape degradation are often linked to unsustainable fire use by local communities. Madagascar is a case in point: the island is considered globally exceptional, with its remarkable endemic biodiversity viewed as threatened by unsustainable anthropogenic fire. Yet, fire regimes on Madagascar have not been empirically characterised or globally contextualised. Here, we contribute a comparative approach to determining relationships between regional fire regimes and global patterns and trends, applied to Madagascar using MODIS remote sensing data (2003–2019). Rather than a global exception, we show that Madagascar's fire regimes are similar to 88% of tropical burned area with shared climate and vegetation characteristics, and can be considered a microcosm of most tropical fire regimes. From 2003–2019, landscape-scale fire declined across tropical grassy biomes (17%–44% excluding Madagascar), and on Madagascar at a relatively fast rate (36%–46%). Thus, high tree loss anomalies on the island (1.25–4.77× the tropical average) were not explained by any general expansion of landscape-scale fire in grassy biomes. Rather, tree loss anomalies centred in forests, and could not be explained by landscape-scale fire escaping from savannas into forests. Unexpectedly, the highest tree loss anomalies on Madagascar (4.77×) occurred in environments without landscape-scale fire, where the role of small-scale fires (&lt;21 h [0.21 km2]) is unknown. While landscape-scale fire declined across tropical grassy biomes, trends in tropical forests reflected important differences among regions, indicating a need to better understand regional variation in the anthropogenic drivers of forest loss and fire risk. Our new understanding of Madagascar's fire regimes offers two lessons with global implications: first, landscape-scale fire is declining across tropical grassy biomes and does not explain high tree loss anomalies on Madagascar. Second, landscape-scale fire is not uniformly associated with tropical forest loss, indicating a need for socio-ecological context in framing new narratives of fire and ecosystem degradation

    Hierarchy of Lifshitz transitions in the surface electronic structure of Sr2RuO4 under uniaxial compression

    Get PDF
    Funding: We gratefully acknowledge support from the Engineering and Physical Sciences Research Council (Grant Nos. EP/T02108X/1 and EP/R031924/1), the European Research Council (through the QUESTDO project, 714193), and the Leverhulme Trust (Grant No. RL-2016-006). E.A.M., A.Z., and I.M. gratefully acknowledge studentship support from the International Max-Planck Research School for Chemistry and Physics of Quantum Materials. N.K. is supported by a KAKENHI Grants-in-Aids for Scientific Research (Grant Nos.18K04715, and 21H01033), and Core-to-Core Program (No. JPJSCCA20170002) from the Japan Society for the Promotion of Science (JSPS) and by a JST-Mirai Program (Grant No. JPMJMI18A3). APM and CWH acknowledge support from the Deutsche Forschungsgemeinschaft - TRR 435 288 - 422213477 (project A10). We thank Diamond Light Source for access to Beamline I05 (Proposals SI27471 and SI28412), which contributed to the results presented here.We report the evolution of the electronic structure at the surface of the layered perovskiteSr2RuO4 under large in-plane uniaxial compression, leading to anisotropic B1g strains of εxx − εyy = −0.9 ± 0.1%. From angle-resolved photoemission, we show how this drives a sequence of Lifshitz transitions, reshaping the low-energy electronic structure and the rich spectrum of van Hove singularities that the surface layer of Sr2RuO4 hosts. From comparison to tight-binding modelling, we find that the strain is accommodated predominantly by bond-length changes rather than modifications of octahedral tilt and rotation angles. Our study sheds new light on the nature of structural distortions at oxide surfaces, and how targeted control of these can be used to tune density of states singularities to the Fermi level, in turn paving the way to the possible realisation of rich collective states at the Sr2RuO4 surface.PostprintPeer reviewe

    Biomass burning fuel consumption dynamics in the (sub)tropics assessed from satellite

    Get PDF
    Landscape fires occur on a large scale in (sub)tropical savannas and grasslands, affecting ecosystem dynamics, regional air quality and concentrations of atmospheric trace gasses. Fuel consumption per unit of area burned is an important but poorly constrained parameter in fire emission modelling. We combined satellite-derived burned area with fire radiative power (FRP) data to derive fuel consumption estimates for land cover types with low tree cover in South America, Sub-Saharan Africa, and Australia. We developed a new approach to estimate fuel consumption, based on FRP data from the polar-orbiting Moderate Resolution Imaging Spectroradiometer (MODIS) and the geostationary Spinning Enhanced Visible and Infrared Imager (SEVIRI) in combination with MODIS burned-area estimates. The fuel consumption estimates based on the geostationary and polar-orbiting instruments showed good agreement in terms of spatial patterns. We used field measurements of fuel consumption to constrain our results, but the large variation in fuel consumption in both space and time complicated this comparison and absolute fuel consumption estimates remained more uncertain. Spatial patterns in fuel consumption could be partly explained by vegetation productivity and fire return periods. In South America, most fires occurred in savannas with relatively long fire return periods, resulting in comparatively high fuel consumption as opposed to the more frequently burning savannas in Sub-Saharan Africa. Strikingly, we found the infrequently burning interior of Australia to have higher fuel consumption than the more productive but frequently burning savannas in northern Australia. Vegetation type also played an important role in explaining the distribution of fuel consumption, by affecting both fuel build-up rates and fire return periods. Hummock grasslands, which were responsible for a large share of Australian biomass burning, showed larger fuel build-up rates than equally productive grasslands in Africa, although this effect might have been partially driven by the presence of grazers in Africa or differences in landscape management. Finally, land management in the form of deforestation and agriculture also considerably affected fuel consumption regionally. We conclude that combining FRP and burned-area estimates, calibrated against field measurements, is a promising approach in deriving quantitative estimates of fuel consumption. Satellite-derived fuel consumption estimates may both challenge our current understanding of spatiotemporal fuel consumption dynamics and serve as reference datasets to improve biogeochemical modelling approaches. Future field studies especially designed to validate satellite-based products, or airborne remote sensing, may further improve confidence in the absolute fuel consumption estimates which are quickly becoming the weakest link in fire emission estimates

    Multi-decadal trends and variability in burned area from the fifth version of the Global Fire Emissions Database (GFED5)

    Get PDF
    Long-term records of burned area are needed to understand wildfire dynamics, assess fire impacts on ecosystems and air quality, and improve fire forecasts. Here, we fuse multiple streams of remote sensing data to create a 24 year (1997–2020) dataset of monthly burned area as a component of the fifth version of the Global Fire Emissions Database (GFED5). During 2001–2020, we use the Moderate Resolution Imaging Spectroradiometer (MODIS) MCD64A1 burned area product and adjust for the errors of commission and omission. Adjustment factors are estimated based on region, land cover, and tree cover fraction, using spatiotemporally aligned burned area from Landsat or Sentinel-2. Burned area in croplands, peatlands, and deforestation regions is estimated from MODIS active fire detections. Along-Track Scanning Radiometer (ATSR) and Visible and Infrared Scanner (VIRS) active fire data are used to extend the time series back to 1997. The global annual burned area during 2001–2020 is estimated to be 774 ± 63 Mha yr−1 or 5.9 ± 0.5 % of ice-free land. Burned area declined by 1.21 ± 0.66 % yr−1, a cumulative decrease of 24.2 ± 13.2 % over 20 years. The global reduction is primarily driven by a decrease in fires in savannas, grasslands, and croplands. Forest, peat, and deforestation fires did not exhibit significant long-term trends. The GFED5 global burned area is 93 % higher than MCD64A1, 61 % higher than GFED4s, and in closer agreement with products from higher-resolution satellite sensors. These data may reduce discrepancies between fire emission estimates from activity-based and atmospheric-based approaches, and improve our understanding of global fire impacts on the carbon cycle and climate system. The GFED5 global burned area product is freely accessible at https://doi.org/10.5281/zenodo.7668423 (Chen et al., 2023).</p
    corecore